PASSION Runtime Library for the Intel Paragon®

Alok Choudhary

Rajesh Bordawekar

K. Sivaram!

Sachin More

Dept. of Electrical and Computer Engineering

Syracuse University, Syracuse, NY 13244

choudhar, rajesh, ssmore, sivaram Qcat.syr.edu

Rajeev Thakur

Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439

thakur@mcs.anl.gov

Abstract

We are developing a runtime library which pro-
vides a number of routines to perform the I/O re-
quired in parallel applications in an efficient and con-
ventent manner. This is part of a project called PAS-
SION, which aims to provide software support for
high-performance parallel 1/O at the compiler, run-
time and file system levels. The PASSION Runtime
Library uses a high-level interface which makes it easy
for the user to specify the 1/O required in the program.
The user only needs to specify what portion of the data
structure needs to read from or written to the file, and
the PASSION routines will perform all the necessary
1/0 efficiently. This paper gives an overview of the
PASSION Runtime Library and describes in detail its
high-level interface.

1 Introduction

Parallel computers are becoming increasingly pow-
erful day by day. This has made possible the solution
of many problems which were previously considered
intractable. These include large scale applications in
physics, chemistry, biology, engineering, medicine and
other sciences, as well as in other areas such as infor-
mation technology. Many of these applications deal
with large data sets and hence have significant 1/O re-
quirements. Improvements in the I/O performance of

*This work was supported in part by a grant from Intel SSD
and NSF Young Investigator Award CCR-9357840. This work
was performed in part using the Intel Paragon and Touchstone
Delta Systems operated by Caltech on behalf of the Concur-
rent Supercomputing Consortium. Access to this facility was
provided by CRPC.

tDept. of Computer and Information Science, Syracuse
University

parallel computers have not kept pace with improve-
ments in their computation and communication ca-
pabilities. This results in the I/O system being the
bottleneck in many cases.

There are a number of reasons why I/O may be
needed in a parallel program [7]. In many applica-
tions, all the data required by the program cannot fit
in main memory and so has to be stored in files on
disks. Such programs are called out-of-core programs.
In out-of-core programs, I/O is needed to access the
entire data set. I/O may also be required in in-core
programs where all the data can fit in main memory.
For example, it may be necessary to read input data
from files at the start of the computation and write
results to files at the end of the computation. During
the computation, it may be necessary to periodically
write data to files to monitor the progress of the so-
lution. In applications which run for a long time, it
may be necessary to checkpoint (stop) the computa-
tion at some point and restart it later. This requires
saving the contents of the data structures in files. I/O
may also be required for the purpose of debugging a
parallel program.

We are working on a project called PASSION (Par-
allel and Scalable Software for Input-Output) which
aims to provide software support for high-performance
parallel I/O on distributed memory parallel comput-
ers [1]. PASSION provides support at the compiler,
runtime and file system levels. The PASSION Run-
time Library provides a number of optimized routines
to perform the I/O required in parallel applications
in an efficient manner. It uses a high-level interface
which makes it easy for the user to specify the I/O re-
quired in the program. The interface also enables the
use of collective I/O in which processors cooperate to

perform I/O efficiently. The user is freed from the bur-
den of explicitly manipulating file pointers, calculating
file offsets, managing buffers and other tedious tasks
associated with using the low-level interface provided
by parallel file systems. This paper gives an overview
of the PASSION Runtime Library and describes in
detail its high-level interface.

The rest of this paper is organized as follows. Sec-
tion 2 gives a brief overview of the PASSION Runtime
Library. The need for providing high-level interfaces
for parallel I/O is explained in Section 3. Section 4 de-
scribes the various data structures used by the PAS-
SION library. The interface used by several of the
PASSION routines is described in Section 5, followed
by Conclusions in Section 6.

2 Overview of the PASSION Runtime

Library

The PASSION Runtime Library provides routines
to efficiently perform the I/O required in parallel ap-
plications, both in-core as well as out-of-core. It sup-
ports a loosely synchronous Single Program Multiple
Data (SPMD) programming model. The PASSION li-
brary uses a simple high-level interface, which is a level
higher than any of the existing parallel file system in-
terfaces, as shown in Figure 1. For example, the user
only needs to specify what section of the array needs to
be read in terms of its lower-bound, upper-bound and
stride in each dimension, and the PASSION Runtime
Library will fetch it in an efficient manner. PASSION
thus provides a simple and portable level of abstrac-
tion above the native parallel file system provided on
the machine. The PASSION library is designed to ei-
ther be directly used by application programmers, or a
compiler could translate out-of-core programs written
in a high-level data-parallel language like High Per-
formance Fortran (HPF) to node programs with calls
to the library for I/O. A number of optimizations,
such as two-phase I/O, data sieving, data prefetch-
ing and data reuse, have been incorporated in the li-

brary [11, 12, 10].

2.1 Architectural Model
The architectural model assumed by PASSION is

that of any general distributed memory computer in
which the processors are connected together in some
fashion. The system is assumed to be provided with a
set of disks and I/O nodes. The I/O nodes can either
be dedicated processors or some of the compute nodes
may also serve as I/O nodes. Each processor may ei-
ther have its own local disk or all processors may share
the set of disks. The I/O subsystem may have a sepa-
rate interconnection network or it can share the same
network which connects the processors together. Thus
the architectural model of PASSION conforms to that
of any of the commercially available parallel comput-
ers. The PASSION library was originally implemented

on the Intel Paragon and Touchstone Delta systems.
It is currently being ported to other machines.

2.2 Data Storage and Access Models

In out-of-core programs, all the data required by
the program cannot fit in main memory, and so has
to stored in files on disks in some fashion. PASSION
supports two basic models for storing and accessing
data, called the Local Placement Model (LPM) and
the Global Placement Model (GPM).

2.2.1 Local Placement Model (LPM)

In this model, the global array is divided into local
arrays belonging to each processor. Since the local ar-
rays are out-of-core, they have to be stored in files on
disks. The local array of each processor is stored in a
separate file called the Local Array File (LAF) of that
processor. The node program explicitly reads from
and writes to the file when required. The simplest way
to view this model is to think of each processor as hav-
ing another level of memory which is much slower than
main memory. If the I/O architecture of the system is
such that each processor has its own disk, the LAF of
each processor will be stored on the disk attached to
that processor. If there is a common set of disks for all
processors, the LAF will be distributed across one or
more of these disks. In other words, we assume that
each processor has its own logical disk with the LAF
stored on that disk. The mapping of the logical disk to
the physical disks depends on how much control the
parallel file system provides the user. At any time,
only a portion of the local array is fetched and stored
in main memory. The size of this portion depends on
the amount of memory available. The portion of the
local array which is in main memory is called the In-
Core Local Array (ICLA). All computations are per-
formed on the data in the ICLA. Thus, during the
course of the program, parts of the LAF are fetched
into the ICLA, the new values are computed and the
ICLA is stored back into appropriate locations in the
LAF.

2.2.2 Global Placement Model (GPM)

In this model, the global array is stored in a single file
called the Global Array File (GAF), and no local ar-
ray files are created. The global array is only logically
divided into local arrays in keeping with the SPMD
programming model. But, there is a single global ar-
ray on disk. The PASSION runtime system fetches
the appropriate portion of each processor’s local array
from the global array file, as requested by the user.
The advantage of the Global Placement Model is that
it saves the initial local array file creation phase in
the Local Placement Model. In addition, if the dis-
tribution of the array among processors needs to be

E HPF/HPC++]

{ Node + MP]

e 7
Interface Interface
PASSION RUNTIME SYSTEM
Message Passing System |
- I ! J
L Parallel File System]

Figure 1: Software Architecture

changed during program execution, an explicit redis-
tribution of the out-of-core data is not required. The
disadvantage is that each processor’s data may not be
stored contiguously in the GAF, resulting in multiple
read requests and higher I/O latency time. However,
this drawback can be overcome to a large extent by
using the Two-Phase Method for I/O [6, 12]. Also,
in the Global Placement Model, explicit synchroniza-
tion is required when a processor needs to access data
that may have been previously modified by another
processor.

2.3 Optimizations

A number of optimizations have been incorporated
in the PASSION Runtime Library. We briefly describe
some of them below. Further details and performance
results are given in [11, 12, 10].

2.3.1 Collective I/O Using a Two-Phase
Method

In data parallel programs, all processors perform sim-
ilar operations but on different data sets. Hence if
one processor needs to read data from disks, it is very
likely that a group of processors or maybe all proces-
sors need to read data from disks at about the same
time. This makes it possible for the requesting pro-
cessors to cooperate in reading or writing data in an
efficient manner, which is known as collective 1/0. If
processors perform I/0O independently, it may result in
a large number of low granularity requests which may

arrive from different processors in any order. On the
other hand, if processors use collective I/O, they can
cooperate among themselves to perform I/0O efficiently
in large chunks and in the right order.

The PASSION library performs collective I/O us-
ing a Two-Phase Method [6, 12]. This can be used
to read/write either entire arrays or sections of ar-
rays with/without strides in each dimension. In the
Two-Phase Method, I/O is done in two phases. In
the first phase, processors cooperate to read data in
large contiguous chunks. A dynamic scheme is used
to partition the I/O workload among processors, de-
pending on the access requests [12, 10]. In the second
phase, data is redistributed among processors using
interprocessor communication, so that each processor
gets the data it requested. The main advantages of
the Two-Phase Method are:-

e It results in high granularity data transfer be-
tween processors and disks.

e It makes use of the higher bandwidth of the pro-
cessor Interconnection network.

2.3.2 Data Sieving

All PASSION routines for reading or writing data
from/to disks support the reading/writing of regu-
lar sections of arrays with strides. For example, a
processor may want to read a section of an out-of-
core two-dimensional array given by its lower-bound,

upper-bound and stride in each dimension (l; : u :
s1,13 : us 1 83). The interfaces provided by most of the
parallel file systems at present do not support strided
accesses. Hence the only way of reading this array sec-
tion using a direct method is to explicitly move the file
pointer to each element and read it individually. This
requires as many reads as the number of elements in
the section. The major disadvantage of this method
is the large number of I/O calls and low granularity
of data transfer. Since I/O latency is very high, this
method proves to be very expensive [11].

An optimization called data sieving is used in PAS-
SION to read/write strided data efficiently. For read-
ing a strided section, instead of reading only the re-
quested elements, large contiguous chunks of data are
read at a time into a temporary buffer in main mem-
ory. This includes unwanted data. The useful data is
extracted from the buffer and passed on to the call-
ing program. The amount of data read in each read
operation depends on the amount of temporary space
available. A similar method is used for writing reg-
ular sections, except that this requires an extra read
before the write, to avoid overwriting any data already
present in the file. The advantage of data sieving
is that it results in higher granularity data transfer,
though extra data is also transferred in the process.
We found that data sieving provides considerable per-
formance improvement [11, 10].

2.3.3 Data Prefetching

In both the Local and Global Placement Models, pro-
gram execution proceeds by fetching data from a file,
performing the computation on the data and writing
the results back to a file. This is repeated on other
data sets till the end of the program. Thus I/O and
computation form distinct phases in the program. A
processor has to wait while each data set is being read
or written as there is no overlap between computa-
tion and I/O. The time taken by the program can be
reduced if it 1s possible to overlap computation with
I/O in some fashion. A simple way of achieving this
is to issue an asynchronous I/O read request for the
next data set immediately after the current data set
has been read. This is called data prefetching. Since
the read request is asynchronous, the reading of the
next data set can be overlapped with the computation
being performed on the current data set. If the com-
putation time is comparable to the I/O time, this can
result in significant performance improvement [11, 10].

2.3.4 Data Reuse

In many applications, a portion of the current data set
fetched from the file is also needed for computation on
the next data set. To reduce the amount of /0, the
data already fetched into main memory can be reused

(11,12)

(ul,u2)

B C

Figure 2: Processor 0 needs to access section (/1 :
u1, s : uz) of the out-of-core array ABCD, stored in a
file in column-major order.

instead of reading it again from disk. The amount of
data reuse depends on the intersection of the sets of
data needed for computation on the portion of data
currently fetched into memory and the portion that
will be fetched next.

3 High-Level Interfaces

Most parallel file systems provide a one-dimensional
view of data, i.e. the file is viewed as a linear sequence
of records. The user needs to know how the data struc-
ture in the program is mapped to this one-dimensional
sequence of records. For example, a two-dimensional
array may be stored in the file in row-major or column-
major order. To read/write a portion of the data, the
user has to explicitly calculate where the data is lo-
cated in the file, move the file pointer to that location
and then read/write data. Also, the interface provided
by most parallel file systems does not support strided
accesses. If the required data lies strided in the file,
the user has to explicitly seek to each contiguous por-
tion and read/write that contiguous portion. We call
such an interface a low-level interface.

For example, consider Figure 2. ABCD is a large
out-of-core array stored in a file in column-major or-
der. Processor 0 needs to read a section of this array
given by the indices (I3 : wuj,ls : ug). This section
does not lie contiguously in the file. Each column of
the section is located contiguously, but the individual
columns are separated by some other data. The only
way to read this section using the traditional low-level
interface provided by a parallel file system is to ex-
plicitly seek to the first element of each column, read
all elements in the column, then seek to the first ele-
ment of the next column and so on. There are several
drawbacks to directly using the low-level interface:-

e Calculating offsets and manipulating file pointers
is tedious to the user.

e Since the I/O latency is very high, the larger the
number of requests required to access data, lower
is the performance.

e The file system cannot perform optimizations
based on the access requests of all processors,
since in general, there is no support for proces-
sors to make collective requests.

We believe that high-level interfaces that facilitate
the use of semantic knowledge about the accesses from
parallel application programs are necessary for simple,
portable and efficient programming. For example, in
the case of Figure 2, the user should be able to spec-
ify in a simple way and in a single call, that the sec-
tion (I : ui,lz : ug) of the array needs to be read.
A library of optimized routines can be developed to
read the necessary data using the low-level interface
provided by the file system. PASSION provides such
a high-level interface for the convenience of the user,
and a library of routines which support this interface
efficiently.

Recently, some file systems have been developed,
such as the Vesta file system [4] and the nCUBE file
system [5], which provide some limited support for
the user to specify a logical view of the data to be
accessed. There have also been some proposals for
file system interfaces which allow the user to specify
strided requests in a single read/write call [3, 8]. Spe-
cialized interfaces are also provided by other runtime
libraries such as [7, 9]. The PASSION Runtime Li-
brary provides a very general high-level interface. For
example, the user can access arbitrary array sections
with strides in each dimension. The array elements
can be of any type, even user-defined records. The ar-
ray can be stored in the file in any storage order and
the file can have a header containing some additional
information. PASSION also supports a collective in-
terface, so that optimizations can be performed based
on the knowledge of the access requests of all proces-
sors. Sections 4 and 5 describe the PASSION interface

in detail.

4 PASSION Data Structures
The PASSION library provides support for read-
ing/writing entire arrays as well as sections of arrays
stored in files. It uses the following data structures for
this purpose.
4.1 Out-of-Core
(OCAD)

Each out-of-core array has a descriptor associ-
ated with it called the Out-of-Core Array Descriptor
(OCAD). The OCAD contains the following informa-

tion about the array

Array Descriptor

e Number of dimensions

e Size of the global array

e Size of each element of the array in bytes : Each
element of the array could potentially be a struc-
ture or record. This enables the PASSION library
to support arrays of any data type.

e Number of processors in each dimension
e Distribution of the array in each dimension
o Size of the In-Core Local Array (ICLA)

e Size of the overlap area

Size of the Out-of-Core Local Array (OCLA)

4.2 Parallel File Pointer (PFILE)

The parallel file pointer is the parallel equivalent
of the file pointer associated with a sequential file. It
is allocated by the PASSION open routine. It needs
to be passed as a parameter to all PASSION routines
that access files. The parallel file pointer contains the
following information about the parallel file :

e System file descriptor

o Header size

4.3 Prefetch Descriptor

The prefetch descriptor is used to store informa-
tion about prefetch read operations in progress. It is
allocated by the routine PASSION prefetch read. It
is used by the PASSION prefetch wait routine which
waits for a previously initiated prefetch operation to
complete.

4.4 Reuse Descriptor

This data structure is used to implement the
data reuse operation. It is allocated by the
PASSION reuse_init routine, which initiates a reuse
operation. It is updated on the subsequent calls to the
PASSION read reuse routine which actually does the
reuse.

4.5 Access Descriptor

This data structure is used to specify which section
of the array needs to be read or written. It is a two
dimensional array; row ¢ specifies the lower bound,
upper bound and stride in dimension ¢ of the section
to be accessed.

5 PASSION Interface

We describe the interface used by several of the
PASSION routines. Further details can be found in
the PASSION User’s Guide [2].

5.1 Setting up the OCAD
All PASSION routines which access arrays require
a pointer to the OCAD. The OCAD can be created

and initialized as follows :

e The OCAD has to first be allocated using the rou-
tine PASSION malloc_OCAD.

OCAD *PASSION_malloc OCAD(int dimensions);

The parameter to this routine is the number of
dimensions of the out-of-core array.

o After the OCAD has been allocated, it can be ini-
tialized using the routine PASSION £i11 OCAD.

int PASSION £il1l OCAD(OCAD* OCADptr,
int *size, int distribution[]1[2],
int *nprocs, int *ocla size,

int icla_size[][2], int overlap[][2],
int elemsize, int storage);

The parameters to this routine are a pointer to
the OCAD, size of the array, distribution of the
array, number of processors, size of the OCLA,
size of the ICLA, overlap information, size of each
element of the array, and the storage order of the
array in the file (ROW_MAJOR or COLUMN_MAJOR).

Once the OCAD is initialized, it can be used to ac-
cess the out-of-core array. After all the accesses have
been performed, the OCAD is no longer necessary and
should be deallocated. This can be done using the rou-
tine PASSION free OCAD.

void PASSION free OCAD(OCAD #0CADptr);

5.2 Opening and Closing Files
Files should only be opened and closed with the
routines PASSION open and PASSION close.

PFILE *PASSION open(char *FileName,
unsigned int HeaderSize);
int PASSION close(PFILE #PFilePtr);

The parameters to PASSION open are the name of the
file and size of the header at the start of the file. It
returns a parallel file pointer. Note that in the Local
Placement Model, each processor opens its own sepa-
rate local array file, whereas in the Global Placement
Model, all processors open a common file.

5.3 Accessing the File Header

PASSION provides support for files containing
some other information, in addition to the array, in
the form of a header at the start of the file. The header
can be read using the routine PASSION read header.

int PASSION read_header(PFILE *PFilePtr,
char *HBuf);

The parameters are a parallel file pointer and a pointer
to a buffer in memory to store the header. This rou-
tine can be called immediately after the file is opened,
even before calling PASSION £i11 OCAD. This allows
the application program to store information about
the array in the file header and use that information
to fill in the OCAD.

Information can be written to the file header
using the routine PASSION write header.

int PASSION write_header (PFILE *PFilePtr,
char *HBuf);

5.4 Reading the Array

A number of routines are provided to read the ar-
ray from the file. If each processor’s local array can
fit in its main memory, then the entire local array can
be read using the routine PASSION read.

int PASSION read(PFILE *PFilePtr,
OCAD *0CADptr, char *Array);

The parameters are a parallel file pointer, pointer to
the OCAD, and a pointer to a buffer in main memory
to store the array. This routine is only for the Local
Placement Model. In the Global Placement Model,
even if the entire local array fits in memory, it has to
be read by specifying its lower bound, upper bound
and stride in the global array.

5.4.1 Reading Array Sections

If the array cannot fit in memory, sections of the array
need to be read at a time. PASSION provides rou-
tines to read sections of the array with strides in each
dimension. Separate routines are provided for read-
ing array sections in the Local and Global Placement

Models.

1. Local Placement Model: The routine
PASSION read_section is used to read array sec-
tions in the Local Placement Model.

int PASSION read_section(PFILE *PFilePtr,
0CAD *0CADptr, char *Array, int *Index,
int AccessArray[]1[3]);

The parameters are a parallel file pointer, pointer
to the OCAD, buffer in memory to store the sec-
tion, coordinates of the location in the buffer from
where the section is to be stored, and the sec-
tion to be read specified by an access descriptor

(see Section 4.5). Data sieving is used to read
strided sections [11, 10]. This routine reads the
array section from the local array file to the spec-
ified location in memory. The shape of the sec-
tion is retained. To save memory, the section is
stored without stride in memory, even if there was

a stride in the OCLA.

2. Global Placement Model: The routine
PASSION global read can be used to read
array sections in the Global Placement Model.
Each processor can access any arbitrary section
of the array. The sections requested by different
processors could be distinct, overlapping or even
identical.

int PASSION global read(PFILE *PFilePtr,
OCAD *0CADptr, char *Array, int *Index,
int AccessArray[][3], int nprocs);

The parameters are the same as
for PASSION read_section with the addition of
the number of processors since this is a collective
read operation. This routine uses the Extended
Two-Phase Method described in [12, 10].

5.4.2 Data Prefetching

The PASSION library provides routines for prefetch-
ing data before it is needed. Prefetching is basically
a non-blocking read operation. This can be used to
overlap computation with I/O and thus reduce the
time spent in waiting for I/0.

PREFETCH *PASSION read prefetch(PFILE #PFilePtr,
0CAD *0CADptr, char *Array, int *Index,
int AccessArray[]1[3]);

This routine is used to start a prefetch oper-
ation. The parameters are the same as for
PASSION read _section. It returns a pointer to a
prefetch descriptor (see Section 4.3).

The routine PASSION prefetch wait can be used
to wait for a previously initiated prefetch operation to
complete.

int PASSION prefetch wait(PREFETCH *PREFETCHptr);

5.4.3 Data Reuse

Data reuse can be performed using the routines
PASSION reuse_init and PASSION read reuse.

REUSE #*PASSION read_reuse(PFILE *PFilePtr,
OCAD *0CADptr, int start);

PASSION reuse_init initializes the reuse descriptor

(see Section 4.4). The parameters are a parallel file
pointer, pointer to the OCAD and the position in the
OCLA from where the read operation is to start. It
returns a pointer to the reuse descriptor.

PASSION read reuse is used to read data with
reuse.

int PASSION .read reuse(REUSE *REUSEptr,
char #*Array);

The parameters are a pointer to the reuse descrip-
tor and a pointer to a buffer in memory to store data.
The return value indicates when end of file is reached.
Figure 3 illustrates how reuse works.

5.5 Writing the Array

A number of routines are provided to write arrays
to files. If each processor’s local array can fit in its
main memory, then the entire local array can be writ-
ten using the routine PASSION write.

int PASSION write(PFILE *PFilePtr,
OCAD *0CADptr, char *Array);

The parameters are a parallel file pointer, pointer to
the OCAD, and a pointer to a buffer in main memory
containing the array. This routine is only for the Lo-
cal Placement Model. In the Global Placement Model,
even if the entire local array fits in memory, it has to
be written by specifying its lower bound, upper bound
and stride in the global array.

5.5.1 Writing Array Sections

If the array cannot fit in memory, sections of the array
need to be written at a time. PASSION provides rou-
tines to write sections of the array with strides in each
dimension. Separate routines are provided for writ-
ing array sections in the Local and Global Placement
Models.

1. Local Placement Model: The routine
PASSION write_section is used to write array
sections in the Local Placement Model.

int PASSION write_section(PFILE *PFilePtr,
OCAD *0CADptr, char *Array, int *Index,
int AccessArray[]1[3]);

The parameters are a parallel file pointer, pointer
to the OCAD, buffer in memory containing the
section, coordinates of the starting location of
the section in the buffer, and the section to be
written specified by an access descriptor (see Sec-
tion 4.5). Data sieving is used to write strided
sections [11, 10]. This routine writes the array
section from the specified location in the buffer

OCLA

Call PASSION_reuse _init
Data Used Data Read

Lower Overlap

First call to PASSION read reuse
Upper Overlap

Lower Overlap
Second call to PASSION_read_reuse

Upper Overlap

Lower Overlap
Third call to PASSION_read_reuse
Upper Overlap

Lower Overlap

Fourth call to PASSION _read_reuse
Upper Overlap

Fifth call to PASSION _read_reusereturns-1

Figure 3: Data Reuse

to the local array file. The shape of the section
is retained. The section is assumed to be stored
with unit stride in memory, but is written to the
file with the specified stride.

2. Global Placement Model: The routine
PASSION global write can be used to write ar-
ray sections in the Global Placement Model.
If the sections requested to be written by dif-
ferent processors have some elements in com-
mon, there is a potential data consistency prob-
lem. PASSION.global write has been imple-
mented such that if there are write requests from
multiple processors to the same location, the data

from the highest numbered processor is written to
the file.

int PASSION global write(PFILE *PFilePtr,
OCAD *0CADptr, char *Array, int *Index,
int AccessArray[][3], int nprocs);

The parameters are the same as for
PASSION write_section with the addition of
the number of processors since this is a collec-
tive write operation. The Extended Two-Phase
Method is used for writing sections [12, 10].

6 Conclusions

Portable high-level interfaces; such as the PAS-
SION interface, make it easier for the user to specify
the I/O required in parallel applications. There is no
standard high-level I/O interface at present, but we
believe that the ideas used in PASSION and the ex-
perience gained in its development would help in the
definition of such a standard.

The development of the PASSION library is an
ongoing process. Version 1.0 has been available
since February 1995 and Version 1.1 will be re-
leased soon. We are also in the process of us-
ing the PASSION library for I/O in several real
parallel applications and studying the performance
benefits. Further information about PASSION, in-
cluding the code, can be obtained from the URL
http://www.cat.syr.edu/passion.html.

References

[1] A. Choudhary, R. Bordawekar, M. Harry,
R. Krishnaiyer, R. Ponnusamy, T. Singh, and
R. Thakur. PASSION: Parallel and Scalable
Software for Input-Output. Technical Report
SCCS-636, NPAC, Syracuse University, Septem-
ber 1994. Also available as CRPC Technical Re-
port CRPC-TR94483-S.

[2] A. Choudhary, R. Bordawekar, S. More,
K. Sivaram, and R. Thakur. A User’s Guide
for the PASSION Runtime Library Version 1.0.

[7]

(8]

[9]

[10]

[11]

Technical Report SCCS-702, NPAC, Syracuse
University, February 1995.

P. Corbett, D. Feitelson, Y. Hsu, J. Prost,
M. Snir, S. Fineberg, B. Nitzberg, B. Traversat,
and P. Wong. MPI-IO: A Parallel I/O Interface
for MPI, Version 0.3. Technical Report NAS-95-
002, NASA Ames Research Center, January 1995.

P. Corbett, D. Feitelson, J. Prost, and S. Baylor.
Parallel Access to Files in the Vesta File System.
In Proceedings of Supercomputing 93, pages 472—
481, November 1993.

E. DeBenedictis and J. del Rosario. nCUBE Par-
allel 1/O Software. In Proceedings of 11'* Inter-
national Phoeniz Conference on Computers and
Communications, pages 117-124, April 1992.

J. del Rosario, R. Bordawekar, and A. Choud-
hary. Improved Parallel I/O via a Two-Phase
Runtime Access Strategy. In Proceedings of the
Workshop on I/O in Parallel Computer Systems
at IPPS 93, pages 56-70, April 1993.

N. Galbreath, W. Gropp, and D. Levine.
Applications-Driven Parallel I/O. In Proceedings
of Supercomputing 93, pages 462-471, November
1993.

N. Nieuwejaar and D. Kotz. Low-level Interfaces
for High-level Parallel I/O. In Proceedings of the
Third Annual Workshop on I/O in Parallel and
Distributed Systems, pages 47-62, April 1995.

K. Seamons and M. Winslett. An Efficient Ab-
stract Interface for Multidimensional Array I/0.
In Proceedings of Supercomputing 94, pages 650—
659, November 1994.

R. Thakur. Runtime Support for In-Core and
Out-of-Core Data-Parallel Programs. PhD the-
sis, Dept. of Electrical and Computer Engineer-
ing, Syracuse University, May 1995.

R. Thakur, R. Bordawekar, A. Choudhary,
R. Ponnusamy, and T. Singh. PASSION Run-
time Library for Parallel I/O. In Proceedings of
the Scalable Parallel Libraries Conference, pages
119-128, October 1994.

R. Thakur and A. Choudhary. Collective I/O
Using an Extended Two-Phase Method with Dy-
namic Partitioning. Technical Report SCCS-704,
NPAC, Syracuse University, March 1995.

